back to trigonometry video lessons

Find maximum and minimum values of a trigonometry function

Question:

Find the maximum and minimum values of a trigonometry function y = 4 cos2x + 1

Solution:

using the formula: cos2x = (cos 2x + 1)/2

y = 4 cos2x + 1
= 4 (cos 2x + 1)/2 + 1
= 2 (cos 2x + 1) + 1
= 2 cos 2x + 2 + 1
= 2 cos 2x + 3

Because the range of cos 2x is: -1 <= cos 2x <= 1

when cos 2x = -1, y = 2 × -1 + 3 = -2 + 3 = 1.

when cos 2x = 1, y = 2 × 1 + 3 = 2 + 3 = 5.

Therefore, the maximum value of the function y is 5 and the minimum value of the function y is 1.

find maximum and minimum values of the function y = 4 cos x square plus one

Watch the video for more details.