back to math question and answer
Graph of y = 1 - cos ( pi/4 - x )
- y = 1 - cos ( pi/4 - x )
- = 1 - cos [ - ( x - pi/4 )]
- Formula : cos ( - x ) = cos x
- so y = 1 - cos ( pi/4 - x )
- = 1 - cos [ - ( x - pi/4 )]
- = 1 - cos ( x - pi/4 )
- Step 1: Draw the graph of y = cos x

- when x = 0, y = cos x = cos 0 = 1, y is maximum
- when x = pi/2, y = cos x = cos pi/2 = 0
- when x = pi, y = cos x = cos pi = -1, y is minimum
- Step 2: Draw the graph of y = cos ( x - pi/4 )
- Right shift y = cos x pi/4 to get the graph of y = cos ( x - pi/4 )

- when x = pi/4, y = cos ( x - pi/4 ) = cos ( pi/4 - pi/4 ) = cos 0 = 1, y is maximum
- when x = 3pi/4, y = cos ( x - pi/4 ) = cos ( 3pi/4 - pi/4 ) = cos 2pi/4 = cos pi/2 = 0
- Step 3: Draw the graph of y = - cos ( x - pi/4 )
- Refletion the graph of y = cos (x - pi/4) in the x-axis to get the graph of y = - cos ( x - pi/4 )

- Step 4: Draw the graph of y = 1 - cos ( x - pi/4 )
- Add one to the graph of y = - cos ( x - pi/4 ) to get the graph of y = 1 - cos ( x - pi/4 )
